Can ``Something You Know'' be Saved?

Baris Coskun and Cormac Herley
Polytechnic University, NY
Microsoft Research, Redmond

Introduction: Authentication

- 1. Something you know
 - Passwords, Passphrase
 - Challenge-Response
 - Graphical Passwords
 - Secret Questions
- 2. Something you have
 - RSA securID
 - smartcard
- 3. Something you are
 - Fingerprint, biometrics

Two factor just means two of the above: e.g. Password + Smartcard

Challenge Response

- Problem with passwords is replay:
 - "Prove" identity by revealing secret (password)
 - Do this on untrusted PC, and keylogger knows it too!
- Can we reveal only part of secret?
 - E.g. suppose I memorize 256 bits
 - At login server challenges: SHA1(secret x salt) = ???
 - Now keylogger learns nothing
- Except I can't memorize 256 bits, or do SHA1
 - Within constraints of human memory (40-80 bits), and calculating power what can we do?

Attack Model

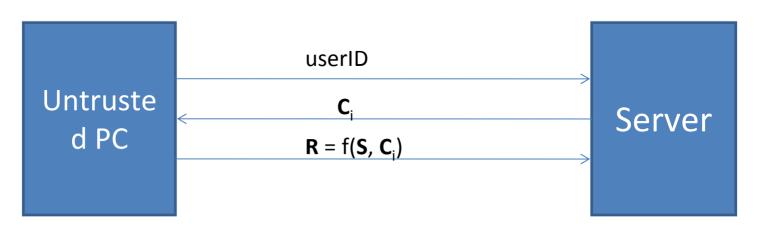
- Attacker observes everything on PC
 - keystrokes, mouse-moves, screenshots, traffic
- Attacker observes several login sessions
 - E.g. login many times from same PC

Why Bother with this?

- Aren't passwords going to be replaced by.....
 - Tokens, securID, 2 factor?
 - Some web 2.0 thing I read about?
- Maybe, but
 - Need ``Something You Know'' (at least as 2nd factor)
 - Instantaneous, free, ubiquitous
 - Only thing worse than 29 passwords is 29 smartcards!

Related Work

- Weinshall [2006]
 - Proposed Challenge Response scheme
- Golle and Wagner [2007]
 - Demonstrate brute force break.
- Lei et al [2007]
 - New scheme (see Appendix for break)
- Pattern:
 - Author 1: "here's a clever scheme"
 - Author2: "here's how to break it"
- Is there a systematic problem with Challenge Response?


Challenge Response

S	N-bit secret shared between user/server			
C _i	Challenge (random)			
$\mathbf{R} = f(\mathbf{S}, \mathbf{C}_i)$	M-bit response (based on challenge and secret)			
M	#bits of response > 20. Random guess has < 10 ⁻⁶ chance			
N	#bits user must remember: TBD			

Everything except **S** is public **User's task:** remember N bits, perform calculation $\mathbf{R} = f(\mathbf{S}, \mathbf{C}_i)$, give M-bit response

Challenge Response

- User must calculate R = f(S, C_i) in his head
 - No use of untrusted PC

Example:

- Cryptographic Hash: f() = SHA1(), \$ > 256 bits
 - User returns $\mathbf{R} = SHA1(\mathbf{S}, \mathbf{C}_i)$
 - Problem: remember 256 bits, do SHA1 in head
- Challenge for random portions of secret
 - S = "Rex chewed Mary's new slippers"
 - **C** = Deliver chars in posns 7, 9, 13, 17
 - $-\mathbf{R}$ = "eeas"
 - Problem: attacker gets whole secret after few logins

A Single Login

- Response is M-bits (or M/k k-bit symbols)
 - $R = f(S,C_i) = R_0R_1R_2R_{M/k-1}$
- How many bits of S involved in calculating R_i?
- Suppose all N bits of S used for each bit of R_i
 - Requires at least M(N-1) binary decisions
 - E.g. 20 (80-1) = 1580 decisions
 - User performs 2 decisions/second → 13.3 minutes!
- So only U << N bits involved in each symbol R_i

Model

W logins => MW-bit stream

$$-\Gamma = R_0 R_1 R_2 \dots R_{M/k-1} R_{M/k} R_{M/k+1} \dots R_{W-1}$$
1st M-bit login W-1 logins

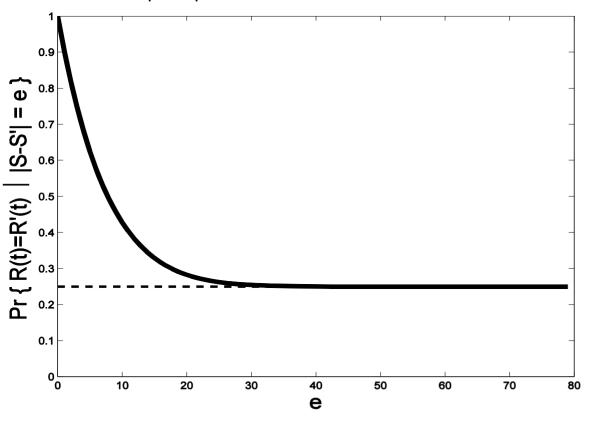
- Attacker can try many offline attempts
 - For each secret S' calculate

$$-\Gamma' = R'_0 R'_1 R'_2 \dots R'_{M/k-1} R'_{M/k} R'_{M/k+1} \dots R'_{W-1}$$

• If $\Gamma = \Gamma'$ attacker is done.

How Many bits of Secret involved in each output symbol

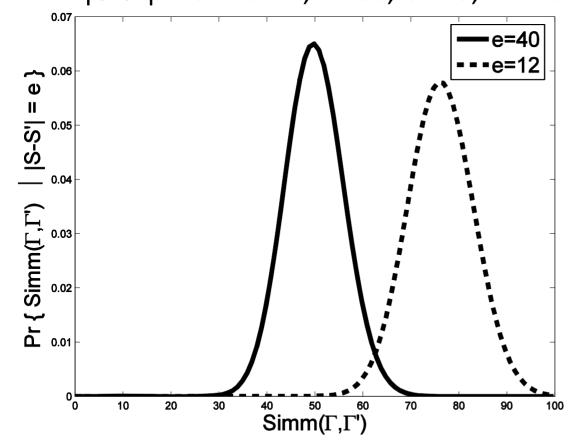
- Two secrets S and S' differ in e posns
- What about their responses?
 - $-\mathbf{R}_0\mathbf{R}_1\mathbf{R}_2 \dots \mathbf{R}_{M/k-1}$
 - R'₀R'₁R'₂R'_{M/k-1}
- Only U<<N bits of S involved in each R_i
- When e <<N high probability that none of the e bits where S and S' differ among U involved


$$\mathbf{R}_{i} = \mathbf{R'}_{i}$$

A Generic Brute-Force Attack

- 1. When **S** and **S**' are close Γ and Γ ' are close
- 2. It's easy to find an S' that's close to S
- 3. Once close it's easier to get closer

Secrets close => Responses close


 $Prob\{R_i = R'_i \text{ given } | S - S' | = e, N = 80, U = 10\}$

- |S-S'|large
 - Pr ~ 0.25
- |S-S'|small
 - $Pr\{\} \rightarrow 1$

Secrets close => Responses close

Simm(Γ , Γ ') same given |S-S'|=40 and 12; N=80, U=10, W=20

- Can distinguish
 - |S-S'| large
 - |S-S'|small
- Responses coincide more

Easy to get a secret that's close

- Enumerate Γ' for large number of secrets S'
- Retain those for which
 - Simm(Γ , Γ) is large
- With high probability have at least one S'
 - -|S-S'| is small

Once close, easy to get closer

- Suppose we're close:
 - |S-S'| = e and e is small
- Flip one bit of **S**':
 - Either distance e-1 or e+1
 - Distance e-1 produce responses more like Γ than distance e+1 neighbors
 - Repeat and iterate to S

The Generic Attack

- Choose enough secrets S' to ensure that several are close to S
- Retain those where
 - Simm(**Γ,Γ'**) is large
- On all remaining secrets S'
 - Iterate to get closer.

What's needed to resist Brute-force?

• Time to Brute-force secret

#Logins	N=50	N=60	N=70	N=80
10	9.9	24	16	58
15	10.5	15.9	23	32
20	12.2	20.5	30.2	42
25	17.5	27.8	41.4	57

Recall: user must do > 20(N-1) decisions

Conclusion

- If (Secrets close => Response close)
 - then GameOver
- When U << N scheme easily brute-forced
- If we cannot restrict #logins observed
 - Very hard to find anything between
 - Passwords
 - Tokens, securID, OTP's, 2 factor
- Questions?