Can Something You Know” be
Saved?

Baris Coskun and Cormac Herley
Polytechnic University, NY
Microsoft Research, Redmond

Introduction: Authentication

1. Something you know .
— Passwords, Passphrase = :
— Challenge-Response
— Graphical Passwords
— Secret Questions

2. Something you have ”ma
— RSA securlD
— smartcard

3. Something you are
— Fingerprint, biometrics

Two factor just means two of the above:
e.g. Password + Smartcard

Challenge Response

 Problem with passwords is replay:
— “Prove” identity by revealing secret (password)
— Do this on untrusted PC, and keylogger knows it too!

e Can we reveal only part of secret?
— E.g. suppose | memorize 256 bits
— At login server challenges: SHA1(secret x salt) = ???
— Now keylogger learns nothing

 Except|can’t memorize 256 bits, or do SHA1

— Within constraints of human memory (40-80 bits),
and calculating power what can we do?

Attack Model

o Attacker observes everything on PC

— keystrokes, mouse-moves, screenshots, traffic

e Attacker observes several login sessions

— E.g. login many times from same PC

Why Bother with this?

 Aren’t passwords going to be replaced by.....
— Tokens, securlD, 2 factor?
— Some web 2.0 thing | read about?

e Maybe, but

— Need “'Something You Know’’ (at least as 2"d
factor)

— Instantaneous, free, ubiquitous

— Only thing worse than 29 passwords is 29
smartcards!

Related Work

Weinshall [2006]
— Proposed Challenge Response scheme

Golle and Wagner [2007]
— Demonstrate brute force break.

Lei et al [2007]
— New scheme (see Appendix for break)

Pattern:
— Author 1: “here’s a clever scheme”
— Author2: “here’s how to break it”

Is there a systematic problem with Challenge Response?

Challenge Response

S N-bit secret shared between user/server
Challenge (random)

R=1(S, C) M-bit response (based on challenge and secret)

\Y #bits of response > 20. Random guess has < 10®
chance
N #bits user must remember: TBD

Everything except S is public
User’s task: remember N bits, perform calculation R = f(S, C),
give M-bit response

Challenge Response

userlD

Untruste C
d PC R=1(S, C)

* User must calculate R = f1(S, C) in his head

— No use of untrusted PC

Example:

e Cryptographic Hash: f() = SHA1(), S > 256 bits
— User returns R = SHA1(S, C)
— Problem: remember 256 bits, do SHA1 in head

e Challenge for random portions of secret
— S = “Rex chewed Mary’s new slippers”
— C = Deliver chars in posns 7,9, 13, 17
— R = “eeas”

— Problem: attacker gets whole secret after few
logins

A Single Login

Response is M-bits (or M/k k-bit symbols)
—R=f(5,C) =R,R,R, Ru/ka
How many bits of S involved in calculating R.?

Suppose all N bits of S used for each bit of R,

— Requires at least M(N-1) binary decisions

— E.g. 20 (80-1) = 1580 decisions

— User performs 2 decisions/second = 13.3 minutes!

So only U << N bits involved in each symbol R,

Model

e W logins => MW-bit stream

1= RoR{R; oo Rupjcs RuapRuiss v Rig
\

Y
15t M-bit login W-1 logins

Attacker can try many offline attempts

— For each secret S’ calculate
- I-’ - R’ R’lR’z R’M/k'l R’M/kR’M/k+1 R’W'l

If I =" attacker is done.

How Many bits of Secret involved in
each output symbol

Two secrets S and S’ differ in e posns
What about their responses?

—R,R(R, Ry /k-1

—R’,R';R’, R \/k-1

Only U<<N bits of S involved in each R,

When e <<N high probability that none of the e bits
where S and S’ differ among U involved

R =R’

A Generic Brute-Force Attack

1. When Sand S’ are close I'and I’ are close
2. It's easy tofind an S’ that’s close to S
3. Once close it’s easier to get closer

Secrets close => Responses close

Prob{R=R’. given |S-S’|=e, N=80, U=10}

e |S-S'|large
e Pr~0.25

e |S-S'|small
e Pri}—2>1

| | | | | |
0 10 20 30 40 50 60 70 80

Secrets close => Responses close

Simm(I',I"’) same given
S-S’ |=40 and 12; N=80, U=10, W=20

0.07
— =40
o~ 0.06]- (\ R ===e=12]. e (Can d|5t|ngU|Sh
o : .
| .
5 0.05 :. Y ¢ | S‘S’ | |arge
i ¥ 1
2] oy e |S-S'|small
— 004 . .
~ . * Responses coincide
" 0.03 .] .
% : . more
g 0.02 : “
75) ' .
Syt N |
S y .
0. oot v “
A
.
. . . . ‘.-.
00 10 20 30 50 60 70 80 90 100

40
Simm(",I"

Easy to get a secret that’s close

e Enumerate I’ for large number of secrets S’
e Retain those for which

— Simm(l, ") is large
 With high probability have at least one §’

— |S—-S"] is small

Once close, easy to get closer

e Suppose we're close:
— |S-S’|=e and e is small
* Flip one bit of S’:
— Either distance e-1 or e+1

— Distance e-1 produce responses more like I than
distance e+1 neighbors

— Repeat and iterateto S

The Generic Attack

 Choose enough secrets S’ to ensure that
several are closeto S

e Retain those where
— Simm([,I’) is large

 On all remaining secrets §’
— [terate to get closer.

What’'s needed to resist Brute-force?

e Time to Brute-force secret

ogns N0 IN-s0 (N0 In-so
10 9.9 24 16 58

15 10.5 15.9 23 32
20 12.2 20.5 30.2 42
25 17.5 27.8 41.4 57

e Recall: user must do > 20(N-1) decisions

Conclusion

If (Secrets close => Response close)
— then GameOver

When U << N scheme easily brute-forced

If we cannot restrict #logins observed

— Very hard to find anything between
e Passwords
e Tokens, securlD, OTP’s, 2 factor

Questions?

	Can ``Something You Know’’ be Saved?
	Introduction: Authentication
	Challenge Response
	Attack Model
	Why Bother with this?
	Related Work
	Challenge Response
	Challenge Response
	Example:
	A Single Login
	Model
	How Many bits of Secret involved in each output symbol
	A Generic Brute-Force Attack
	Secrets close => Responses close
	Secrets close => Responses close
	Easy to get a secret that’s close
	Once close, easy to get closer
	The Generic Attack
	What’s needed to resist Brute-force?
	Conclusion

