
Path-based Access Control
for Enterprise Networks

Matthew Burnside and Angelos D. Keromytis
Columbia University

ISC 2008
9/16/08

Overview

• Motivation

• Access control policy mechanisms in
current usage are flawed

• Goal

• New paradigm for enterprise-scale
security policies

Organization

• Background and problem

• Solution 1: Graph-based

• Solution 2: KeyNote

• Evaluation

• Conclusion

Access control history

• Formalized by Lampson
1. User makes a request

2. Access-control mechanism consults security policy

3. Makes decision

4. Goes inactive

• Gatekeeper model

Enterprise-scale policy

• PolicyMaker takes a unified approach to
describing policies and trust relationships.

• STRONGMAN showed how to scale policy
distribution.

• Neither considers dynamic interactions.

A simple network

Internet Firewall Web server Database

A simple policy

Internet Firewall Web server Database

port 80 auth:
 user/pass

auth:
 pubkey

Global policy violation

Internet Firewall Web server Database

port 80 auth:
 user/pass

auth:
 pubkey

Global policy violation

Internet Firewall Web server Database

Global policy violation

Internet Firewall Web server Database

port 80 auth:
 user/pass

auth:
 pubkey

A flawed model

• Attack violates sysadmin’s initial
assumptions about the network.

• Insight: global policy enforcement requires
dynamic interaction between access
control components.

Solution 1: Graph-based

• Model network requests like function call
graphs

• Define policies as paths through the graphs

Example session

Example session

Firewall entry

Principal: 10.1.2.3

Example session

Firewall entry

Principal: 10.1.2.3

Example session

Firewall entry

Firewall exit

Principal: 10.1.2.3

Example session

Firewall entry

Firewall exit

HTTP read

Principal: 10.1.2.3

Example session

Firewall entry

Firewall exit

HTTP read

Principal: 10.1.2.3

FS auth FS read

Example session

Firewall entry

Firewall exit

HTTP read

Principal: 10.1.2.3

FS auth FS read

DB auth DB read

Defining a policy

Firewall entry

Firewall exit

HTTP read

Principal: 10.1.2.3

FS auth FS read

DB auth DB read

Firewall entry
Firewall exit
HTTP read
DB auth
DB read

Solution 2: KeyNote-
based

• Model network requests like function call
graphs

• Define policies as certificate chains
representing paths through the graphs

• Prevents an adversary from modifying the
inherited chain.

KeyNote overview

• Five components (Defined in RFC2704)

• Actions: operations with security consequences

• Principals

• Policy language

• Credentials: allow principals to delegate authorization to other principals

• Compliance checker: return yay or nay (policy compliance value), given a
requested action, a policy, and a set of credentials

Policy assertions

• Policies and credentials are called
assertions

• A special principal, called POLICY, is the
root of trust

KeyNote-Version: 2
Local-Constants: Alice="RSA:a8ce1212"
Authorizer: "POLICY"
Licensees: Alice
Conditions: (app_domain=="FTP") && (@size < 1GB);

Credential assertions

• Allows delegation of trust from principal to
principal

KeyNote-Version: 2
Local-Constants: Alice="RSA:a8ce1212"
 Bob="RSA:8787fefe"
Authorizer: Alice
Licensees: Bob
Conditions: (app_domain == "FTP") &&
 (address == "cs.columbia.edu");
Signature: "RSA-SHA1:a1a2b3b4"

Path-based access
control

Path-based access
control

Path-based access
control

Path-based access
control

Events are assertions

KeyNote-Version: 2
Comment: Forward request to web server
Local-Constants: FW_key = "RSA:acdfa1df"
 WEB_key = "RSA:deadbeef"
Authorizer: FW_key
Licensees: WEB_key
Signature: "RSA-SHA1:f00f2244“
Conditions: …

Generating an event
KeyNote-Version: 2
Comment: Forward request to web server
Local-Constants: FW_key = "RSA:acdfa1df"
 WEB_key = "RSA:deadbeef"
Authorizer: FW_key
Licensees: WEB_key
Signature: "RSA-SHA1:f00f2244“
Conditions: …

Building the assertion
path

• The request propagates through the
network, and correlation sensors generate
assertions.

• Each assertion is forwarded to the next
hop along with the request.

Building the assertion
path

• Assertion set forms a certificate chain from
the entry point to the receiving node!

Example chain
KeyNote-Version: 2
Comment: Forward request to web server
Local-Constants: FW_key = "RSA:acdfa1df"
 WEB_key = "RSA:deadbeef"
Authorizer: FW_key
Licensees: WEB_key
Signature: "RSA-SHA1:f00f2244“
Conditions: …

KeyNote-Version: 2
Comment: Web server to business logic
Local-Constants: BL_key = "RSA:1111a1df"
 WEB_key = "RSA:deadbeef"
Authorizer: WEB_key
Licensees: BL_key
Signature: "RSA-SHA1:faaf2244“
Conditions: …

KeyNote-Version: 2
Comment: Forward request to DB
Local-Constants: BL_key = "RSA:1111a1df"
 DB_key = "RSA:feeffeef"
Authorizer: BL_key
Licensees: DB_key
Signature: "RSA-SHA1:abab2244“
Conditions: …

Policy evaluation

• Leverage the KeyNote compliance checker

• Is the chain complete?

• Is the chain correct?

• KeyNote compliance checker returns yay
or nay.

Evaluation

Mechanism Transfer
time Overhead Overhead/

node

Vanilla 162ms - -

Graph 317ms 155ms 52ms

KeyNote 1120ms 958ms 319ms

Request a 1M file, averaged over 25 trials, across a 3-node
network.

Conclusion

• Enhance the current access control
paradigm to protect against a new class of
attacks.

• Any questions?

