Path-based Access Control for Enterprise Networks

Matthew Burnside and Angelos D. Keromytis Columbia University

ISC 2008 9/16/08

Overview

- Motivation
 - Access control policy mechanisms in current usage are flawed

- Goal
 - New paradigm for enterprise-scale security policies

Organization

- Background and problem
- Solution I: Graph-based
- Solution 2: KeyNote
- Evaluation
- Conclusion

Access control history

- Formalized by Lampson
 - I. User makes a request
 - 2. Access-control mechanism consults security policy
 - 3. Makes decision
 - 4. Goes inactive

Gatekeeper model

Enterprise-scale policy

 PolicyMaker takes a unified approach to describing policies and trust relationships.

 STRONGMAN showed how to scale policy distribution.

Neither considers dynamic interactions.

A simple network

A simple policy

Global policy violation

Global policy violation

Global policy violation

A flawed model

- Attack violates sysadmin's initial assumptions about the network.
- Insight: global policy enforcement requires dynamic interaction between access control components.

Solution I: Graph-based

- Model network requests like function call graphs
- Define policies as paths through the graphs

Principal: 10.1.2.3

Firewall entry

Principal: 10.1.2.3

Defining a policy

Solution 2: KeyNote-based

- Model network requests like function call graphs
- Define policies as certificate chains representing paths through the graphs
- Prevents an adversary from modifying the inherited chain.

KeyNote overview

- Five components (Defined in RFC2704)
 - Actions: operations with security consequences
 - Principals
 - Policy language
 - Credentials: allow principals to delegate authorization to other principals
 - Compliance checker: return yay or nay (policy compliance value), given a requested action, a policy, and a set of credentials

Policy assertions

```
KeyNote-Version: 2
Local-Constants: Alice="RSA:a8ce1212"
Authorizer: "POLICY"
Licensees: Alice
Conditions: (app_domain=="FTP") && (@size < 1GB);</pre>
```

- Policies and credentials are called assertions
- A special principal, called POLICY, is the root of trust

Credential assertions

Allows delegation of trust from principal to principal

Events are assertions

Generating an event

KeyNote-Version: 2

Comment: Forward request to web server
Local-Constants: FW_key = "RSA:acdfaldf"

WEB key = "RSA:deadbeef"

Authorizer: FW_key Licensees: WEB key

Signature: "RSA-SHA1:f00f2244"

Conditions: ...

Building the assertion path

- The request propagates through the network, and correlation sensors generate assertions.
- Each assertion is forwarded to the next hop along with the request.

Building the assertion path

 Assertion set forms a certificate chain from the entry point to the receiving node!

Example chain

```
KeyNote-Version: 2
Comment: Forward request to web server
Local-Constants: FW key = "RSA:acdfa1df"
                 WEB key = "RSA:deadbeef"
Authorizer: FW key
Licensees: WEB key
                                       KeyNote-Version: 2
Signature: "RSA-SHA1:f00f2244"
                                       Comment: Web server to business logic
Conditions: ...
                                       Local-Constants: BL key = "RSA:1111a1df"
                                                         WEB key = "RSA:deadbeef"
                                       Authorizer: WEB key
                                       Licensees: BL key
                                                                                 KeyNote-Version: 2
                                        Signature: "RSA-SHA1:faaf2244"
                                                                                 Comment: Forward request to DB
                                        Conditions: ...
                                                                                 Local-Constants: BL key = "RSA:1111a1df"
                                                                                                  DB key = "RSA:feeffeef"
                                                                                 Authorizer: BL key
                                                                                 Licensees: DB key
                                                                                 Signature: "RSA-SHA1:abab2244"
                                                                                 Conditions: ...
```

Policy evaluation

- Leverage the KeyNote compliance checker
 - Is the chain complete?
 - Is the chain correct?

 KeyNote compliance checker returns yay or nay.

Evaluation

Mechanism	Transfer time	Overhead	Overhead/ node
Vanilla	162ms	-	-
Graph	317ms	I 55ms	52ms
KeyNote	I I 20ms	958ms	319ms

Request a IM file, averaged over 25 trials, across a 3-node network.

Conclusion

 Enhance the current access control paradigm to protect against a new class of attacks.

• Any questions?