
1

BotTracer: ExecutionBotTracer: Execution--based Botbased Bot--like like
Malware DetectionMalware Detection

Lei Liu, Songqing Chen
George Mason UniversityGeorge Mason University

Guanhuan Yan
Los Alamos National LabLos Alamos National Lab

Zhao Zhang
Iowa State UniversityIowa State University

簡報者�
簡報註解�
I am going to present Botracer which leverages virtual machine to detect botnets . It’s the work done by Lei Liu, collaborated with Songqing Chen from George Mason University, Guanghua Yan from Los Alamos National Lab and Zhao Zhang from Iowa State University. Due to various issues, they cannot make to the conference.

[click to next slide]�

2

Background

• Botnets
– A number of Compromised Internet

computers (bots, zombies)
– Under a common command-and-control

infrastructure
– Controlled by a botmaster
– Responsible for spam, DDoS, sniffing and

other attacks

簡報者�
簡報註解�
All of us must have been bothered by spam, but maybe not all of us know that most of spam today are sent by botnets.

[click]

Botnets are also known as zombie army, typically consisting of a number of compromised computers called bots or zombies.

Often those computers are controlled through command-and-control channel by botmaster.

Today botnets are responsible for all kinds of network attacks like DDoS and spam.

Here is an example how spammers use bonets for spamming.

[click to next slide]�

3

How Spammer Uses Botnets

簡報者�
簡報註解�
[click]

Step1:Botmaster sends out malware, infecting and controlling PCs.

[click]

Step2:Infected PCs log into an IRC server or other medium, forming a network of infected systems known as a botnet.

[click]

Step3:Spammer purchases usage of this botnet from the botmaster, for example, 1 dollor/oer hour/per machine.

[click]

Step4:Spammer sends instructions to the botnet, instructing the infected PCs to send out spamming emails.

[click]

Step5:The infected PCs send spamming emails.

Besides spamming, the botmaster can use botnets to engage other network attacks like DDoS. Today the threat of botnets is becoming more and more serious.

[click to next slide] �

4

Growing Threats

• The Dutch police found a 1.5 million node
botnet [2005]

• 1000’s of new bots each day [Symantec
2005]

• One quarter of all PCs connected to the
internet may become part of a botnet

簡報者�
簡報註解�
[click]

For example, in 2005, Dutch police found a botnet of 1 and a half million bots. We know that 1000 nodes could start an effective DDoS attack.

[click]

And it is reported that there are 1000 new bots emerged everyday.

[click]

It’s been estimated that ¼ PC have been part of a botnet!

[click to next slide]�

5

Existing Solutions and Problems
• Signature

– Unknown bots
• Identify IRC Traffic (port, content) [J. Zhuge

2007]
– New protocols like HTTP, FTP
– Encryption

• Network Traffic Patten Recognition [BotHunter]
– New botnets architecture: P2P
– Hard to identify with legitimate traffic

• Taint Analysis [E. Stinson, 2007]
– Performance

Neither solution captures the basic characteristics
of botnets

簡報者�
簡報註解�
To defend against botnets, security community has proposed a lot of schemes, motivated by the traditional malware detection methods.

[click]

Signature is still an effective anti-malware approach,

[click]

but for new or unknown malware, it doesn’t work. Encryption also causes its in-effectiveness.

[click]

Since IRC is the dominating (and traditional) protocol used in early botnets, most early work focuses on IRC detection, for example, by trying to identify IRC port and IRC specific content.

[click][click]

But new botnets adopt other protocols like HTTP and FTP and after encryption, it’s difficult to identify IRC content.

[click]

Some researchers proposed to find botnet traffic pattern.

[click][click]

However, this approach is challenged by the new architecture like P2P. It’s also hard to separate bot traffic from legitimate traffic.

[click][click]

Taint analysis has also been proposed, but it has performance issues and it might affect current system.

[click]

In summary, we find that none of existing solutions captures the basic characteristic of botnets.

[click to next slide]�

6

Our Contributions

• Analyze the basic characteristics of botnets

• Propose BotTracer to execute malware
samples in a controlled environment and
effectively capture botnets characteristics

• Implement a prototype system

• Experiment based on real bot samples

簡報者�
簡報註解�
Compared with existed solutions, BotTracer aims to solve this problem based on the basic botnets’ characteristics.

In this work,

[click]

we analyze basic characteristics of botnets based on botnet attack phases.

[click]

Accordingly, we propose BotTracer to detect these phases in a controlled environment.

[click]

To evaluate the performance, we Implement a prototype of BotTracer,

[click]

And we test with real bot samples.

[click to next slide]�

7

Outline

• Design Principles and Overview

• Design Issues

• Evaluations

• Conclusions

簡報者�
簡報註解�
After introducing the background, now I am going to present BotTracer design principles.�

8

Bot Attack Phases

Automatic
Startup

C&C
Channel

Information
Harvest/Dispersion

A bot can be
started

automatically to
join botnets

Possibly
includes some

popular
applications

like IE

Impractical
for a

botmaster to
actively trace
all of its bots

Bots have
to initialize
command
and control

channel

Collect
sensitive

information
Organize
d attacks

Bot
Startup?

Prepare
to receive
command?

Attack
?

suspicious Highly suspicious Bot!

簡報者�
簡報註解�
Bottracer is based on basic characteristics of botnets, and is a host-based approach.

For a single running bot, the attack usually consists of three phases.

[click]

Automatic startup

[click]

C&C channel

[click]

Information harvest/dispersion

With respect to process behavior of a single bot, the basic characteristics of botnets are those three attack phases.

To capture all three phases, Bottracer also defines three detection phases accordingly.

[click]

If a process automatically starts up , the process is suspicious. [Given the pervasive usage of NAT and firewalls, a bot must start itself and then contact the botmaster]

[click]

After c&c channel is found, the process is ready to receive command, now it’s highly suspicious. [To control a large number of infected machines, it is practically impossible for the botmaster to activate each machine. Instead, each bot must actively build a C&C channel to the server.]

[click]

Finally attacks such as information harvesting/dispersion will be conducted.

[click]

If we can detect each of these phases, BotTracer finally raises an alarm.

[click to next slide]�

9

Design Goal and Challenge

Automatic
Startup

C&C
Channel

Information
Harvest/Dispersion

Bot
Startup?

Prepare
to receive
command?

Attack
?

Locate
suspicious
processes

Filter bot traffic
from legitimate

traffic

Identify attack
activities from

normal activities

簡報者�
簡報註解�
Thus, the design goal of bottracer is to identify these three attack phases based on bot behaviors.

[click]

The first phase, BotTracer aims to locate suspicious processes.

[click]

In the second phase, BotTracer must filter botnets traffic from legitimate traffic in order to reduce detection noise.

[click]

In the last phase, Bottracer will identify attack activities from normal activities.

Next, let’s see, how Bottracer realizes these detection goals.

[click to next slide]

 �

10

BotTracer Architecture

host VM

Traffic
Diverter

Traffic
Monitor

Behavior
Analyzer

Input/output
Controller

Network
card

Application
Synchronizer

Converter

word IE IE

VMM

Hardware

• Synchronizer
– Static
– Dynamic

• Traffic
Monitor
– Identify

C&C
channel

• Behavior
Analyzer
– Monitors

suspiciou
s process
behaviors

簡報者�
簡報註解�
In order to solve all above challenges, Bottracer chooses to use VM to create a controlled environment. In this controlled environment, bot traffic and behaviours could be separated from normal activities.

[click]

Unlike other VM-based approaches like many honeypot-based schemes, bottracer is designed to detect bot-like malware on running systems. The first step is to clone the original system to VM. After the cloning, BotTracer performs application synchronization between the VM and the host.

[click]

For static synchronize: We use VM tools like converter, P2V to copy permanent storage of host to VM.

[click]

For dynamic synchronize: The application synchronizer will copy popular applications which didn’t automatically startup to VM.

[click]

In the example shown here, because infected IE could join botnets too, we copy it to VM.

[click]

To filter traffic noise and to monitor traffic pattern, we use a traffic monitor

[click]

Which can identify C&C channel.

[click]

In order to detect information dispersion, we need a behavior analyzer

[click]

It monitors suspicious/abnormal process behaviors.

[click to next slide]�

11

Outline

• Design Principles and Overview

• Design Issues

• Evaluations

• Conclusions

簡報者�
簡報註解�
Next I will discuss more design details in BotTracer.�

12

Phase I Challenge

Automatic
Startup

C&C
Channel

Information
Harvest/Dispersion

Bot
Startup?

Prepare
to receive
command?

Attack
?

White List
Starting Point Set

Locate
suspicious
processes

Filter bot traffic
from legitimate

traffic

簡報者�
簡報註解�
Let’s review the challenges in designing BotTracer.

In the first and second detection phases, we need to

[click]

Locate suspicious processes and

[click]

Filter bot traffic from legitimate traffic.

It’s essential to exclude unnecessary processes and traffic for BotTracer.

[click]

Bottracer uses whitelisting and introduces the concept starting point set to solve this problem. �

13

Whitelist and Starting Point Set

• Whitelist Legitimate Processes and Traffic
– System daemons (services.exe)
– Software update
– Other known process (MSN, Yahoo)

• Disable Connections to Starting Point Set
– Exclude unnecessary traffic
– Functionality of original copy
– Performance

簡報者�
簡報註解�
[click]

First of all, we will whitelist legitimate processes. Generally, there are three kinds of automatic startup processes.

[click]

The first type is system daemons, for example services.exe

[click]

The second type is software update that is commonly used.

[click]

The third includes other known applications that would automatically startup. E.g. instant messenger, MSN, Yahoo.

Even we know traffic of legitimate applications is benign, we still need to further reduce unnecessary noise traffic to ease analysis.

For this purpose, BotTracer introduces a new concept: starting point set.

Some applications of the third type like MSN will contact the MSN server automatically upon startup. We put their destinations into “starting point set”.

If we let MSN login and it logins successfully, more traffic will follow without any user interference. Such traffic could be identify by Bottracer, but it’s better to stop them from happening at all.

[click]

The solution is straightforward: we will disable any connections whose destinations is in the starting point set.

So unnecessary traffic/behaviors are excluded and the process running in the VM won’t affect the original application copy on the host.

Now because no user operates on VM and there is much less traffic, we are ready for the second detection phase.

[click to next slide]�

14

Phase II Challenge

Automatic
Startup

C&C
Channel

Information
Harvest/Dispersion

Bot
Startup?

Prepare
to receive
command?

Attack
?

C&C Channel
Traffic on VMFilter bot traffic

from legitimate
traffic

簡報者�
簡報註解�
In the second phase, we want to detect whether C&C channels are being established. Building C&C channel must involve network traffic/activities.

[click]

As we use Starting point set and whitelisting, the traffic generated by the legitimate processes has been greatly reduced.

[click]

Thus Bottracer will detect c&c channel establishment on the VM with ease by tracking the outgoing connections from the VM and analyzing the traffic pattern.

[click to next slide]�

15

Command and Control Channel
Architecture Centralized IRC

Decentralized P2P

Type Persistent IRC

Periodic/Sporadic Web based HTTP

Architecture Centralized IRC

Decentralized P2P

Type Persistent IRC

Periodic/Sporadic Web based HTTP

簡報者�
簡報註解�
All botnets use C&C channels to control bots.

Based on the architecture and connection type, we classify existing botnets into 4 categories.

There are two types of command and control channel architectures, centralized and decentralized.

[click]

Traditional IRC based botnets are based on a typical centralized architecture. For this type botnets, all bots connect to a single IRC server.

[click to next slide]�

16

Command and Control Channel
Architecture Centralized IRC

Decentralized P2P

Type Persistent IRC

Periodic/Sporadic Web based HTTP

簡報者�
簡報註解�
Recently, botnets are found to use the decentralized architecture too.

[click]

A typical decentralized case is P2P botnets, Bots connect to each other to form a P2P network.

[click to next slide]�

17

Command and Control Channel
Architecture Centralized IRC

Decentralized P2P

Type Persistent IRC

Periodic/Sporadic Web based HTTP

簡報者�
簡報註解�
The command and control channel connection also has two connection types, persistent and periodic/sporadic.

[click]

Traditional IRC connection is always persistent and all Bots will keep the connection with the server for a long time.

[click to next slide]�

18

Command and Control Channel
Architecture Centralized IRC

Decentralized P2P

Type Persistent IRC

Periodic/Sporadic Web based HTTP
HTTP

簡報者�
簡報註解�
Some latest bots adopt non-persistent connections too.

[click]

For example, some bots will periodically sent HTTP requests to a web server to obtain commands.

Given there are 2 connection architecture and 2 connection type, BotTracer defines an event model to describe the establishment of C&C channel.

[click to next slide]

�

19

Command and Control Channel
Event Model

Start New
connection

Botmaster Intermediate
Point

Intermediate
Point

Peer

Centralized
Channel

Decentralized
Channel

New
connection

persistent

sporadic

persistent

sporadic New connection

accept

accept

persistent

New connection

accept

簡報者�
簡報註解�
The event model works on a single process. It reports the architecture and connection type if the establishment of command and control is detected.

Here is a simple example using centralized persistent connections.

[click -- please be patient --]

At last, the event model will report a centralized architecture with a persistent connection.

[click to next slide]�

20

Phase III Challenge

Automatic
Startup

C&C
Channel

Information
Harvest/Dispersion

Bot
Startup?

Prepare
to receive
command?

Attack
?

Dormant
Behavior
Monitor

Identify attack
activities from

normal activities

簡報者�
簡報註解�
After detecting two phases, BotTracer thinks the process is highly suspicious. In order to confirm whether it is a bot, BotTracer must find bot mal-behaviors.

[click]

That is, Bottracer needs to further detect malicious bot activities to prove the process is actually bot process.

[click]

Bottrace has a dormant behavior monitor to do this. In Bottracer, all applications including bots on the VM run in a controlled environment without user interferences. The processes on the VM are in a dormant status because of the whitelisting and Starting Point Set.

In the dormant status, most processes also generate very simple and tractable activities, for which BotTracer can easily build profiles for them.

Let us see an example that describes the activities in dormant status.

[click to next slide]�

21

An Example Dormant Profile
• IE Profile

{
program name =

C:\Program Files\Internet Explorer\iexplore.exe
starting point set = www.google.com
registry access = false
file access function = GetFileSize
file access directory =

C:\Documents and Settings\user\Local Settings
\Temporary Internet Files\Content.IE5\index.dat

……

}

簡報者�
簡報註解�
This is an example of IE profile. We use XML to write its profile.

After extensive experiments, we can see that even for a complex process like IE, when it is the dormant status, the process activities are so simple and can be described in a couple of lines.

In this example,

GetFileSize is the only API call that IE makes in the dormant status.

[click to next slide]

�

22

Behavior Monitor

Traditional

Exhaustive analysis

Huge profile

Long analysis time

High false positive rate

BotTracer

Only on dormant status

Small profile

Quick analysis

Low false positive rate

簡報者�
簡報註解�
Traditionally, process behavior analysis should be as exhaustive as possible. Considering the complexity of modern application, it requires a huge profile to describe all process activities.

So it takes a long time to analyze and it often has high false positive rates.

[click]

Technically Bottracer has a similar approach as traditional approaches. But Bottracer only perform analysis when processes are in dormant status. The process activities can be described in a small profile, then the analysis is quick and has a low false positive rate. �

23

Information Harvesting Detection

• Disk Access APIs
– OpenFile, CreateFileMapping ……

• Memory Access APIs
– WriteProcessMemory,

ReadProcessMemory ……
• Registry

– RegOpenKeyEx ……

簡報者�
簡報註解�
Based on the process dormant profile, we will check the process activities to find out whether a highly suspicious process conducts information harvesting/dispersion.

In Bottracer, the process behavior is characterized by the system API calls and their parameters.

For information harvesting, bots must have to access disk, memory or registry to find sensitive data. Those are typical access APIs.

[click]

For disk access

[click]

For memory access and

[click]

For registry access.

Note here we only show the typical APIs. Practically each API represents a family of the corresponding APIs that are described in the paper.

[click to next slide]�

24

Information Dispersion Detection

• Common Attacks by Botnets
– Port scan
– Infection attempts
– DDoS, Spam

• BotTracer Solution
– Connection: new connection/failure rate
– Content: signature
– Protocol: HTTP, SMTP

簡報者�
簡報註解�
Bots may conduct information dispersion as well. For example, DDoS and/or spam.

[click]

Here are some common information dispersion attacks launched by botnets

[click]

To detect information dispersion, Bottracer combines traditional approaches at three different levels.

At connection level, we use new connection and failure connection rate to detect whether an attack connection is built.

At content level: BotTracer also scans content in packets for signature.

At protocol level: BotTracer identifies popular protocols for detection. For example, if we found that a dormant process tries to send out SMTP packets, It’s possible that it’s sending spamming emails.

[click to next slide]�

25

Outline

• Design Principles and Overview

• Design Issues

• Evaluations

• Conclusions

簡報者�
簡報註解�
To evaluate the effectiveness of BotTracer, we implement a prototype and evaluate against real bot samples.

�

26

Experimental Setup

• BotTracer runs on Windows XP Professional, 2.79 GHz
CPU and 2 GB RAM.
– VMWare Workstation 5.5
– Guest OS is cloned by converter, Windows XP Professional
– API interceptor: Microsoft Detours

• Bot Samples
– IRC bots and their variants:Agobot4 private, Forbot,

Jrbot,Sdbot, Reptilebot, and Rxbot
– P2P: Nugache
– Other Protocols: Graybird

簡報者�
簡報註解�
In the prototype, the VM we chose is VMWare workstation 5.5. The API interceptor is Detours.

We test BotTracer with the following bot samples:

There are IRC based bots and they are controlled through an IRC server.

We also test P2P bot, Nugache.

In addition, we also test Graybird that uses its own protocols and controlled by a client application.

[click to next slide]�

27

Channel Establishment Detection

Name Alarm Time (s) Architecture Type
Agobot
Forbot
Jrbot
Reptilebot
Sdbot
Rxbot
Graybird
Nugache

Name Alarm Time (s) Architecture Type
Agobot 6.532 Centralized Persistent
Forbot 34.173 Centralized Persistent
Jrbot 1.895 Centralized Persistent
Reptilebot 2.719 Centralized Persistent
Sdbot 0.953 Centralized Persistent
Rxbot 4.409 Centralized Persistent
Graybird 2.997 Centralized Persistent
Nugache 1.422 Suspicious Suspicious

簡報者�
簡報註解�
First we show command and control channel detection result.

The alarm time is the time from a process startup to the time BotTracer raises an alarm.

In our experiments, BotTracer successfully detected traffic pattern of all bot samples. And reported the architecture and connection type.

[click]

Note Nugache is a P2P bot, because the botnets have been cracked down, the sample failed to connect to any peers. However, because the failure rate is high, bottracer still raised an alarm.

[click to next slide]�

28

Rxbot GetCDKeys
Action API Call Arguments

Access
Registry

RegOpenKey
Ex
RegQueryValu
eEx

Software\Bio
Ware\NWN\
Neverwinter

Access
Directory

fopen
fget

C:\Neverwint
erNights\NW
N\nwncdkey.i
ni

… … …

.getcdkeys

BotTracer Behavior
Monitor

fopen

fget

RegOpenKeyEx

RegQueryValueEx

Action API Call Arguments

… … …

No profile/No action in profile
Alarm raised!

簡報者�
簡報註解�
To test whether Bottracer can detect information harvesting, we experiment on Rxbot.

[click]

Rxbot receives a getcdkeys command and will search specific registry and directories to find sensitive information.

[click]

In the experiments, Bottracer recorded related API calls and parameters.

[click]

Since these APIs are not in the profile of any processes, an alarm is raised.

[click to next slide]�

29

Agobot HTTP DDoS Attack Packets
Times Source Destination Type

0 192.168.88.15
6

192.168.88.1
55

IRC

0.012 192.168.88.15
6

192.168.93.5
2

HTTP

2.608 192.168.88.15
6

192.168.93.5
2

HTTP

5.226 192.168.88.15
6

192.168.93.5
2

HTTP

……

.ddos.httpflood http://www.aaaaa.com
100 www.aaa.com 2000

BotTracer Behavior
Monitor

Times Source Destination Type

……

Connection rate over
Threshold, alarm raised!

簡報者�
簡報註解�
To test whether Bottracer can detect information dispersion, we experiment on Agobot.

[click]

Agobot receives a DDoS command and began to sends out HTTP requests to the victim

[click]

Bottracer recorded all outgoing traffic.

[click]

Because the connection rate is over the threshold, an alarm is raised

[click to next slide]

Here is a distributed DOS attack.

�

http://www.aaaaa.com/

30

False Positive Test

• Microsoft Outlook Express 6
– Without Starting Point Set
– With Starting Point Set
– Conclusion:Good idea to have Starting Point

Set

• pcAnywhere
– Has nearly the same functionality as Graybird
– Different traffic pattern

簡報者�
簡報註解�
We also test Bottracer’s false positive rate.

First we test with outlook express.

[click]

Outlook express will automatically connect to mail servers. If the mail servers are not in the starting point set, an alarm will be raised.

Then we include the mail server in the starting point set and run experiments again, no alarm is raised.

This, however, indicates that the starting point set should be as complete as possible and should be updated in time once new applications are installed.

[click]

We also test with pcAnywhere. Although pcAnywere is nearly the same as graybird, it has different traffic pattern, Bottracer event model didn’t detect a command and control channel establishment attempt, and no alarm was raised.

[click to next slide]�

31

Outline

• Design Principles and Overview

• Design Issues

• Evaluations

• Conclusions

32

Conclusions and Future Work
• Based on basic characteristics of botnets, we

propose BotTracer to execute malware samples
in a controlled environment to detect bot
behaviors

• We have implemented and experimented on real
bot samples to demonstrate its feasibility

• We need to further improve
– How about BotTracer without VM?

簡報者�
簡報註解�
So to summarize,

[click]

Based on basic characteristics of botnets, we propose BotTracer to execute malware samples in a controlled environment to detect bot behaviors

[click]

We have implemented and experimented on real bot samples to demonstrate its feasibility

[click]

For future work, we are working on detecting bots without without VM, as VM is commonly a concern that malware can detect its existance.

[click to next slide]�

33

Questions?

Thanks
&

簡報者�
簡報註解�
That’s all, questions?�

	BotTracer: Execution-based Bot-like Malware Detection
	Background
	How Spammer Uses Botnets
	Growing Threats
	Existing Solutions and Problems
	Our Contributions
	Outline
	Bot Attack Phases
	Design Goal and Challenge
	BotTracer Architecture
	Outline
	Phase I Challenge
	Whitelist and Starting Point Set
	Phase II Challenge
	Command and Control Channel
	Command and Control Channel
	Command and Control Channel
	Command and Control Channel
	Command and Control Channel Event Model
	Phase III Challenge
	An Example Dormant Profile
	Behavior Monitor
	Information Harvesting Detection
	Information Dispersion Detection
	Outline
	Experimental Setup
	Channel Establishment Detection
	Rxbot GetCDKeys
	Agobot HTTP DDoS Attack Packets
	False Positive Test
	Outline
	Conclusions and Future Work
	投影片編號 33

