

Hans Löhr

RUB 2008

Property-Based Attestation without a Trusted Third Party

Liqun Chen (HP Labs, Bristol),

Hans Löhr (Ruhr-Uni Bochum),

Mark Manulis (Crypto Group UC Louvain), Ahmad-Reza Sadeghi (Ruhr-Uni Bochum)

Chair for System Security Horst Görtz Institute for IT Security Ruhr-Universität Bochum, Germany

Information Security Conference (ISC) 2008

September 16, 2008, Taipei, Taiwan

Outline

- o Introduction (Property-Based) Attestation
- o Our Approach
- o (In the paper: Formalization / Proof)
- o Conclusions

Attestation (Overview)

Trusted Platform Module (TPM)

o Trusted Computing Group (TCG)

Industrial consortium, publishes specifications

o Trusted Platform Module (TPM)

- Hardware security module (completely trusted)
- Functionality:
 - Digital dignatures, en-/decryption
 - Random number generation, key generation
 - Cryptographic hash function (currently SHA-1)
 - Non-volatile memory, key storage, registers

Authenticated Boot (simplified)

0 **Goal:**

• "Platform configuration" stored inside the TPM, in *platform configuration registers (PCRs)*

o Boot process:

- Hash value of all components is written to PCR
- PCRs can only be "extended": $(PCR_0 := 0)$

PCR_{t+1} := hash(PCR_t | hash(component))

Each component hashes next one that is started

o Result (after boot):

 PCR contains accumulated hash of system components: *configuration*

TCG Attestation (simplified)

Nonce N: anti-replay value Configuration specification cs: hash value

Deficiencies (TCG Attestation)

0 Privacy

- Potential price discrimination
- Disclosure of vulnerabilities
- **O Scalability**
 - Binary hash values hard to manage
 - Minor change leads to different hash

Verifier is interested in properties (not exact configurations)

Property-Based Attestation (PBA)

Security Requirements

O Evidence Authentication (informal):

- Adversary (prover) must not be able to "forge" attestation (report wrong property)
- o Configuration Privacy (informal):
 - Adversary (verifier) must not be able to determine configuration (probability not better than guessing)
- **o "Games" to formalize requirements**
 - For cryptographic proofs (see paper)

Delegation-Based PBA

Host performs zero-knowledge Proof of Knowledge (PoK)

PBA without Trusted Third Party

cs1, cs2, ..., csn

- TPM creates and signs commitment C ("blinding" of cs)
- Host has to "prove" that config "inside" C is from the list cs1, ..., csn
- Index j is kept private
- How is the list cs1, ..., csn negociated?

Realization with Ring Signatures

Idea: realize "proof cs=csj" with ring signature O Ring signatures (abstract / simplified):

- Public keys: PK1, ..., PKn
- Signer who knows SKi (for PKi) can sign m: ringsig(m, (PK1,...,PKn), SKi)
- Verifier can verify that signer knows one secret key matching one of the public keys, but not which one.

o Re-use existing ring sig scheme [AOS02]

Common input: g, h, P, Q Full Protocol

Security

Rough overview:

O Evidence Authentication:

- Security of TPM sig. and commitment
- Security of ring signature
- => Reduce to discrete log
- **O Configuration Privacy:**
 - Anonymity of ring signature
 - Hiding property of commitment
 - => A's success probability not better than guessing

Conclusions / Open Questions

O New property-based attestation protocol, without a Trusted Third Party

- Generalizes existing protocols
- Formalization of security requirements
- Provably secure

o Not directly implementable on current TPMs

- TPM supports all necessary operations
- No command for "signed commitment"
 What are meaningful properties?
 How can such properties be "extracted"?

Some Related Work

- SS04]: Concept of PBA, classification, high-level solutions
- 0 [PSVW04]: PBA with "verification proxy"
- O [HCF04]: "Semantic remote attestation" (based on trusted VMs)
- o [CLL+06]: Crypto protocol for delegation-based PBA
- o [KSS07]: PBA (+ sealing) by hashing public keys of property certificates